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Abstract  24 

Developing olfactory expertise is essential in professions like perfumery, where the ability to 25 

describe, categorize, and conceptualize odors is critical. This study investigates how academic 26 

training during a 1.5-year program at a perfumery school (ISIPCA) shapes olfactory expertise 27 

of perfumery students. Forty students were assessed at three time points, focusing on odor 28 

description, evocation, recognition, discrimination, and categorization tasks. Results show 29 

that training significantly enhanced language abilities related to odor description and 30 

categorization. Students developed a richer and more precise vocabulary to characterize 31 
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odors, aligning more closely with expert’s terminology and contributing to the formation of a 32 

shared olfactory lexicon. Semantic similarity within and between students, as well as with 33 

expert references, increased, emphasizing the importance of consistent language use in 34 

expertise development. Advanced natural language processing and machine learning tools 35 

revealed that the richness of verbal descriptions and semantic similarity were strong 36 

predictors of expertise acquisition. In contrast, improvements in non-verbal tasks, such as 37 

odor discrimination and recognition, were more limited, suggesting that perceptual abilities 38 

may require more extensive training or specialized methods. Building on these results, we 39 

propose potential enhancements to olfactory training including reinforced language practice, 40 

mental imagery exercises, and sensory discrimination tasks, along with personalized training 41 

strategies. These findings highlight the central role of language in the emergence of olfactory 42 

expertise and the importance of computational methods for optimizing training programs and 43 

advancing educational practices in olfactory science. 44 

Keywords: olfactory expertise, learning, perfume training, natural language processing, 45 
machine-learning 46 
  47 



1. Introduction  48 

Olfactory expertise is a distinctive and highly specialized skill, cultivated through intensive, 49 

deliberate practice and targeted training. This expertise is foundational in professions such as 50 

perfumers and sommeliers, where individuals demonstrate extraordinary abilities to recognize, 51 

discriminate, and describe a wide array of complex odor profiles. For perfumers, this expertise 52 

involves not only mastering the intricate combination of thousands of aromatic compounds to 53 

design sophisticated fragrances but also the exceptional ability to mentally construct and 54 

evaluate scent compositions without physical stimuli. 55 

Achieving olfactory expertise requires both perceptual learning and the development of higher-56 

level cognitive processes (for reviews, Parr, 2019; Royet et al., 2013). While olfactory training 57 

has been shown to improve sensitivity, these effects are often modest and odor-specific 58 

(Haehner et al., 2013; Al Aïn et al., 2019; Zambom-Ferraresi et al., 2021). Olfactory expertise 59 

is primarily characterized by enhancements in cognitive functions, including conceptualizing, 60 

categorizing, and memorizing olfactory information (Solomon, 1997; Hughson and Boakes, 61 

2001; Plailly et al., 2012). Short-term training studies also support the role of language in 62 

olfactory expertise. Training laypeople to consistently label odors improves their ability to learn 63 

and categorize them, resulting in higher accuracy and faster learning (Fournel et al., 2017; 64 

Vanek et al., 2021). This suggests a causal link between verbal description and the formation 65 

of odor categories, which is particularly noteworthy in the olfactory domain due to the well-66 

documented challenges of articulating smells through language (Herz, 2005; Olofsson and 67 

Gottfried, 2015). However, while short-term training enhances specific skills like odor labeling, 68 

its benefits may not extend to overall olfactory memory or more generalized tasks, as shown by 69 

Lesschaeve & Issanchou (1996) and Al Aïn et al. (2019). Together, these findings highlight the 70 

nuanced and task-specific nature of olfactory expertise development. 71 



In professional perfumers, extensive training leads to superior olfactory mental imagery and 72 

richer, more precise verbal descriptions of odors. Plailly et al. (2012) demonstrated that 73 

perfumers outperform novices in generating odor mental imagery. This enhanced imagery 74 

ability is highly specialized and does not transfer across sensory modalities, suggesting the 75 

domain-specific nature of olfactory expertise (Bensafi et al., 2017). Perfumers use more 76 

detailed and precise language when describing odors, focusing on chemical and olfactory 77 

qualities rather than general hedonic terms, reflecting a shift in semantic odor processing with 78 

expertise (Sezille et al., 2014).  79 

Similarly, wine experts build their olfactory expertise through improved discrimination, 80 

identification, and recognition of wine-related odors. Studies have shown that wine experts have 81 

a modest yet significant advantage in naming smells and flavors within their domain, 82 

attributable to both perceptual and linguistic training (Croijmans and Majid, 2016). Olfactory 83 

training has been shown to enhance odor identification abilities, even in novices. For instance, 84 

short-term training over five days allowed participants to perform as well as sommeliers in 85 

identifying single odorants (Poupon et al., 2018). However, this improvement did not extend to 86 

mixtures of two or more odorants, highlighting a limitation of short-term training for complex 87 

olfactory tasks. In contrast, other research has demonstrated that targeted olfactory training can 88 

improve novices' ability to detect individual components within a mixture, suggesting that with 89 

focused and potentially longer training, individuals can develop the skills to analyze odor 90 

mixtures (Morquecho-Campos et al., 2019). Wine experts also exhibit superior memory for 91 

wine odors, a skill that is highly specific to their domain of expertise and reflects the effects of 92 

specialized training (Parr et al., 2002; Croijmans et al., 2021). Training enhances their mental 93 

imagery for wine; the vividness of wine imagery increases only after specialized training, 94 

underscoring the role of targeted practice in building olfactory expertise (Croijmans et al., 95 

2020). Additionally, wine experts use richer and more concrete language with distinct patterns 96 



when describing wines, which facilitates the translation of nuanced sensory inputs into detailed 97 

verbal descriptions (Sezille et al., 2014; Croijmans et al., 2024). 98 

Specialized training in perfumery and wine tasting induces both functional and structural brain 99 

changes associated with perceptual and cognitive enhancement. Functional imaging studies 100 

reveal that professional perfumers exhibit decreased activation in olfactory and memory regions 101 

during odor imagery tasks, indicating enhanced efficiency and reduced cognitive effort (Plailly 102 

et al., 2012). Structural brain changes include increased gray matter volume in areas 103 

surrounding the olfactory sulcus, such as the gyrus rectus and medial orbital gyrus, with this 104 

reorganization positively correlated with experience, even counteracting the effect of age, 105 

reflecting the brain's adaptability to olfactory expertise (Delon-Martin et al., 2013). Neural 106 

differences are observed in wine experts compared to novices. Wine sommeliers show 107 

heightened activation in brain regions responsible for gustatory-olfactory integration and high-108 

level cognitive processing (Castriota-Scanderbeg et al., 2005; Pazart et al., 2014; Banks et al., 109 

2016; Sreenivasan et al., 2017). Structural adaptations are also evident, with sommeliers 110 

exhibiting increased volume in sensory olfactory regions, including the olfactory bulb, right 111 

insula, and bilateral entorhinal cortex (Banks et al., 2016; Filiz et al., 2022). Enhanced 112 

connectivity between sensory and semantic networks further supports the translation of nuanced 113 

sensory inputs into detailed verbal descriptions (Carreiras et al., 2024). 114 

Overall, these findings raise important questions about the extent to which olfactory training 115 

generalizes—whether its benefits are limited to specific odor labeling or extend to broader 116 

linguistic and cognitive processes associated with olfaction. Furthermore, little is known about 117 

the gradual emergence of expertise over time. Although Filiz et al. (2022) investigated how 118 

sommelier students develop expertise through a rigorous 1.5-year program involving extensive 119 

sensory training in educational settings, most studies still focus primarily on comparisons 120 

between experts and novices rather than the process of expertise formation. 121 



The present study addresses these gaps by investigating the development of olfactory expertise 122 

in perfumery students over a 1.5-year training program. We assessed a wide range of cognitive 123 

competencies through tasks including odor categorization, odor description, odor evocation, 124 

odor recognition, and odor discrimination. In addition, we performed a detailed analysis of the 125 

language used by participants to describe odors using natural language processing (NLP) and 126 

machine learning (ML) tools. This research aims to provide a comprehensive understanding of 127 

how academic training enhances—or fails to enhance—sensory perception, memory, and 128 

related cognitive abilities, contributing to advancements in olfactory education and professional 129 

expertise. 130 

2. Materials and methods  131 

2.1. Participants  132 

The olfactory experiments were conducted at ISIPCA (International School of Perfume, 133 

Cosmetics Products, and Food Flavor Formulation) between 2018 and 2021 by ISIPCA faculty 134 

and staff, integrating the experiments into the educational curiculum. Since the study was 135 

embedded within the school's pedagogical framework and conducted by instructors rather than 136 

external researchers, no ethical committee approval was required. The study involved 40 137 

ISIPCA students, 35 women and 5 men, with an average age of 17.475 years (SD = 1.585). The 138 

gender distribution reflected the demographics of the school's student cohorts, a factor beyond 139 

our control.  140 

2.2.Olfactory training 141 

Participants were enrolled in the “Specialized Laboratory Technician” diploma, a two-year full-142 

time program. This curriculum covered foundational knowledge in perfumery, cosmetics, and 143 



food flavors, with olfaction as a major component. The training emphasized olfactory 144 

perception, description, and categorization through structured courses and hands-on sessions. 145 

Perfumery Courses – Students studied 120 raw materials over the two-year program. Each raw 146 

material was smelled blindly, described verbally, and classified into an olfactory family based 147 

on Jean-Noël Jaubert’s field of odors (1995). Students assigned three descriptive terms and 148 

created detailed sheets for each raw material. For homework, students assessed the volatility of 149 

raw materials using scent strips and containers prepared during class. Sessions lasted 3 hours 150 

and 30 minutes, including a minimum 20-minute break. The raw materials were organized by 151 

olfactory families to facilitate comparative learning, gradually introducing more intense odors 152 

as the course progressed. A final exam evaluated students' knowledge. They were required to 153 

identify 10 raw materials presented blindly, specifying the olfactory family, descriptors, 154 

volatility, and handling characteristics. 155 

Food Flavors Courses – The training approach for food flavors followed the same principles 156 

as perfumery but included an additional retro-nasal testing step. Raw materials were diluted in 157 

water, tasted, and analyzed both ortho and retro-nasally. Students discussed descriptors until 158 

reaching a consensus for qualitative and quantitative evaluations. In the first year, sessions 159 

covered 6–8 raw materials, increasing to 10 raw materials in the second year. Each session 160 

focused on two distinct families (e.g., fruity and toasted). Evaluations progressed from less to 161 

more persistent materials. For example, fruity materials with minimal afterglow were evaluated 162 

first, followed by more persistent toasted materials. Sessions included one or two breaks. 163 

Exams, held two to three times per year, required students to identify 10 raw materials presented 164 

blindly, specifying descriptors, families, and persistence characteristics. 165 



2.3.Olfactory Stimuli  166 

The odorants consisted of monomolecular compounds, essential oils, homemade compositions, 167 

and perfumes, all sourced from the olfactory base-sample used in ISIPCA's courses. The 168 

monomolecular compounds and essential oils were diluted in alcohol to concentrations 169 

appropriate for olfaction, while the perfumes were pure. All stimuli were presented in brown 170 

15ml bottles coded with a unique three-digit number. A total of 92 independent samples were 171 

selected, each assigned to specific tests: (i) 12 for the evocation and free description tasks, (ii) 172 

6 odorants for the triangle test, (iii) 60 for the olfactory recognition test, and (iv) 14 for the 173 

categorization test (Table S1). 174 

2.4.Visual stimuli in the visual recognition task 175 

In the visual recognition task, 120 images were divided into six sets of 20 images each. These 176 

images were sourced from previously published datasets, including the DMS48 test (Barbeau 177 

et al., 2004). Each participant viewed a unique subset of images across three time points, 178 

ensuring that different images were presented in each session. This design minimized 179 

familiarity effects and provided a more accurate assessment of recognition memory over time. 180 

While unrelated to participants’ olfactory training, this task allowed for the assessment of 181 

general recognition abilities in a domain not influenced by students’ specialized curriculum. 182 

2.5.Experimental tasks  183 

All tests were carried out in the ISIPCA sensory laboratory. Testing and data collection took 184 

place in standard sensory booths, with white lighting and controlled temperature (20 ± 2°C) and 185 

airflow conditions. The expert students participated at three different measurement times: T0 186 

(on arrival at the school, before olfactory training started), T1 (6 months after T0), and T2 (18 187 

months after T0, 12 months after T1). 188 



To assess the effect of academic olfactory training on olfactory capacities, different tasks were 189 

conducted over four half-days on four separate days at each measurement time: 190 

● Day 1: Odor Description, Evocation, and Discrimination tasks 191 

● Day 2: Visual and Olfactory Encoding part of the recognition tasks 192 

● Day 3: Visual and Olfactory Retrieval part of the recognition tasks 193 

● Day 4: Odor Categorization and Categories Description task 194 

These tasks were designed to evaluate various aspects of olfactory perception and cognitive 195 

processing across the three measurement times and were conducted as described below: 196 

Odor description and evocation: In the description task, the objective was to generate terms in 197 

writing describing the odor by answering the question, “How would you objectively describe 198 

this odor?”. In the evocation task, students were asked, “What spontaneously comes to mind 199 

when you smell this odor?” and were invited to complete the sentences: “This scent makes me 200 

want to...” and “This scent reminds me of...”. For both tasks, each student was presented with 201 

two different olfactory stimuli at each measurement time, with up to two minutes allocated to 202 

complete both tasks for each odor. The selection of stimuli was randomized for each student 203 

but ensured that student evaluated each odor only once. 204 

Odor discrimination: Students were presented with three strips in a randomized order: two 205 

strips contained the same odor, and one strip contained a different odor. They were asked to 206 

identify the odd odor. This task involved three trials with the following sets of stimuli: (i) 207 

Flowerbomb (*2) and La Vie Est Belle (*1), (ii) La Nuit Trésor (*2) and Black Opium (*1), 208 

and (iii) L'Homme (*2) and Pink Grapefruit (*1). The same stimuli were used across all 209 

measurement times. 210 

Odor recognition: The test was conducted over two consecutive days. On the first day, students 211 

were presented with ten target olfactory stimuli, each labeled with a unique three-digit code 212 



specific to Day 1 (Encoding) and different from Day 2 (Recognition). They were instructed to 213 

smell each stimulus and try to memorize them. On the second day, students were presented with 214 

a set of 20 olfactory stimuli, including the 10 target stimuli from the first day and 10 new stimuli 215 

(distractors). They were given 5 seconds to smell each stimulus and then indicate whether they 216 

had encountered the odor on the first day. In total, 60 odorants were used across all students 217 

and time measurements, with different subsets of odorants assigned for each time measurement 218 

per student. Responses were recorded using Fizz software during the recognition phase on Day 219 

2, with no maximum response time set. 220 

Visual recognition: This task followed the same paradigm as the odor recognition task, but 221 

with visual stimuli replacing olfactory stimuli. On Day 1 (Encoding), participants were 222 

presented with a series of pictures using a timed PowerPoint presentation, with each image 223 

displayed for 5 seconds. On Day 2 (Recognition), participants' responses were recorded using 224 

Fizz software, with no maximum response time set. The inclusion of a visual recognition task 225 

served as a control to assess participants' baseline cognitive abilities in a domain unrelated to 226 

their training. This distinction allows us to isolate the impact of olfactory training on 227 

performance and ensure that any differences observed are specific to the sensory modality of 228 

interest, rather than reflecting general improvements in recognition or memory processes. 229 

Odor categorization task and categories description: This task aimed at investigating odor 230 

learning through categorization. Students were presented with a total of 15 odorants in a two-231 

step test. In the first step, they were asked to group the odors they perceived as harmonious 232 

together, forming multiple groups ranging from a minimum of 2 to a maximum of 14. In the 233 

subsequent step, students explained their assessments by providing descriptive terms that 234 

capture the common attributes of odors within each group. One participant did not complete the 235 

task at T2 and therefore was removed from the analyses of this task. 236 



2.6.Data analyses 237 

Odor description and evocation: The verbal responses from both tasks were first independently 238 

preprocessed by removing non-alphanumeric characters and converting the text to lowercase 239 

before tokenization into individual words and eliminating stop words to normalize the data. The 240 

cleaned tokens were then assigned part-of-speech tags (e.g., nouns, adjectives, verbs) using a 241 

SpaCy's French language model (fr_core_news_sm). Nouns were analyzed as reprensentations 242 

of olfactory sources, while adjectives were identified as descriptors of the olfactory sources. 243 

The total number of words (including nouns, adjectives, adverbs, and verbs) was also counted 244 

as a general proxy for verbal richness. To validate the accuracy of the automated part-of-speech 245 

tagging, a manual, exhaustive check was performed, ensuring the correct classification of 246 

tokens and refining the data where necessary. After tagging, tokens were lemmatized using 247 

SpaCy to reduce words to their root forms, ensuring consistency in lexical analysis. Lexical 248 

diversity was then measured using two complementary measures: type-token ratio (TTR) and 249 

cosine similarity (𝑐𝑜𝑠𝜃) to capture both diversity and alignment in language use. 250 

TTR is a measure of lexical diversity that compares the number of unique lemmas (types) to 251 

the total number of words (tokens) in a text (TTR = !"#$%
!&'$(%

). This metric provides insight into 252 

the variety of vocabulary used in the responses, serving as an important indicator of linguistic 253 

complexity and richness. TTR ratios were computed within each participant's response as well 254 

as across students' responses to assess the lexical diversity of the verbal responses both within 255 

and between students. 256 

𝑐𝑜𝑠𝜃 measures the semantic similarity between words represented in vector embeddings. A pre-257 

trained French model from FastText (https://github.com/facebookresearch/fastText/) was used 258 

to provide a vectorial representation of word meanings. Cosine angle was then used to measure 259 

the cosine similarity between words vectors =	 ).+
∥)∥∥+∥

	, offering a measure of how similar two 260 

https://github.com/facebookresearch/fastText/


words are in terms of their direction in the embedding space. We defined and calculated several 261 

specific similarity metrics, which were averaged across comparisons to generate a single 262 

similarity value per participant or odor: 263 

- Similarity Within Student: This metric evaluates how similar the words used by 264 

a single participant were to each other, providing insights into the consistency 265 

of language within individual responses. 266 

- Similarity Between Students: This metric compares the vocabulary used by 267 

different students, to identify common themes and vocabulary. 268 

- Similarity with an Expert Teacher: This metric assessed how closely student 269 

language aligned with the target language, by comparing student responses to a 270 

reference set of words representing an expert teacher's vocabulary,. 271 

- Similarity by Odor: This metric groups words by the odors they described, 272 

analyzing how consistently students described the same odor. 273 

Odor and visual recognition tasks: Recognition memory performance was assessed using 274 

parameters derived from signal detection theory (Lockhart and Murdock, 1970). Four response 275 

categories were defined based on the experimental conditions (target or distractor items) and 276 

the students’ behavioral responses (yes or no): Hit and Miss occurred when the target items 277 

were correctly recognized or incorrectly rejected, respectively, and correct rejection (CR) and 278 

false alarm (FA) occurred when the distractor items were correctly rejected or incorrectly 279 

recognized, respectively. Two parameters were calculated from the Hit and FA scores: a 280 

memory score (d'L) and a response bias score (CL). These scores were determined as follows: 281 

𝑑-𝐿 =𝑙𝑛 	,
𝐻𝑅(1 − 𝐹𝑅)
𝐹𝑅(1 − 𝐻𝑅)3	 282 

𝐶𝐿 = 	−0.5(𝑙𝑛 	8
𝐻𝑅(1 − 𝐻𝑅)
𝐹𝑅(1 − 𝐹𝑅)9	)	283 



Here, HR represents the Hit rate [	./012.3
4515

	], FR represents the false alarm rate [	6)12.3
4715

	], and N1 284 

and N2 represent the number of target and distractor odorants, respectively, for which the 285 

students provided a response. Memory scores can be positive or negative, indicating students' 286 

good or poor performance in recognizing target items and rejecting distractor items, 287 

respectively. A d'L score of 0 indicates chance-level performance, where students cannot 288 

reliably distinguish between target and distractor items. Response bias scores indicate three 289 

individual attitudes: conservative (tending to respond “no” to an item), neutral (responding 290 

“yes” or “no” with equal probability), or liberal (tending to respond “yes”), with positive, 291 

neutral, or negative values, respectively (Snodgrass and Corwin, 1988). 292 

Categorization task and Categories verbalization: To analyze the categorization task, we 293 

computed the number of groups created by students, as well as the agreement between cluster 294 

assignments made by students and an expert teacher. To evaluate the consistency and reliability 295 

of the clustering results across time points, two metrics were employed: Cohen's Kappa (κ) and 296 

Adjusted Rand Index (ARI). Cohen's Kappa measures the inter-rater agreement for categorical 297 

items, correcting for the agreement that could happen by chance. It is defined as 𝜅 = 	 #&8#$
58#$

 298 

where po is the observed agreement and pe is the expected agreement by chance. The Adjusted 299 

Rand Index measures the similarity between two data clusterings, adjusting for the chance 300 

grouping of elements. It is defined as 𝐴𝑅𝐼 = 	 9:8;[9:]
(9:)	8;[9:]

 where RI is the Rand Index, which 301 

measures the percentage of decisions that are correct, and 𝐸[𝑅𝐼] is the expected value of the 302 

Rand Index. These metrics were calculated for each participant by comparing their cluster 303 

assignments with those of all other students and with the reference (expert teacher) at each time 304 

point. 305 



The descriptions of each category created by students were analyzed using part-of-speech 306 

tagging, TTR scores and 𝑐𝑜𝑠𝜃	metrics as in the evocation and description task (see the extensive 307 

presentation of these scores above). 308 

Odor discrimination: For each trio of odors, we determined whether the responses were correct 309 

or incorrect. These responses were then summed for each participant at each time point to yield 310 

a global score, referred to as the odor discrimination score. This score enabled to evaluate 311 

overall odor discrimination performance over time, with a random level baseline set at 33%, 312 

indicating chance-level performance. 313 

Temporal dynamic of learning: In the final step of the analyses, we created the performance 314 

profile of each participant at each time measurement by combining their scores in all metrics 315 

significantly modulated by time. These profiles were normalized independently for each metric 316 

to ensure meaningful comparisons between metrics. We then computed the Euclidean distances 317 

between individual performance profiles across different time points (T0 vs. T1, T1 vs. T2, and 318 

T0 vs. T2) to quantify the progress in performance over time. For example, the Euclidean 319 

distance between participant profiles at time T0 and T1 containing three metrics (m1, m2, m3) 320 

is given by the formula: 321 

𝑑(𝑇0, 𝑇1) = 	B(𝑚1!2 −𝑚1!5)7 + (𝑚2!2 −𝑚2!5)7 + (𝑚3!2 −𝑚3!5)7	322 

where 𝑚1!2, 𝑚2!2, 𝑚3!2 and 𝑚1!5, 𝑚2!5, 𝑚3!5 are the values of the three metrics at time 323 

points T0 and T1, respectively. Additionally, we calculated the Euclidean distance between 324 

each pair of students at each distinct time point (T0, T1, and T2) to assess the heterogeneity of 325 

profiles over time. For example, the Euclidean distance between the performance profiles 326 

containing three metrics (m1, m2, m3) of students J1 and J2 is given by the formula: 327 

𝑑(𝐽1, 𝐽2) = 	B(𝑚1A5 −𝑚1A7)7 + (𝑚2A5 −𝑚2A7)7 + (𝑚3A5 −𝑚3A7)7 	328 



2.7. Machine-learning analysis  329 

In the final step of our analysis, we aimed to predict students’ training levels (T0: no training, 330 

T1: 6 months of training, T2: 1.5 years of training) using students’ performance profiles, 331 

combining their scores on metrics significantly affected by time. 332 

Data Preprocessing: Each metric was independently scaled by removing the mean and scaling 333 

to unit variance, and missing values were imputed using SimpleImputer (https://scikit-334 

learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html) with a mean strategy. 335 

This preprocessing ensured a normalized and complete dataset suitable for machine learning 336 

analysis. 337 

Data Splitting and Cross-Validation: To maintain data integrity and prevent leakage, a nested 338 

cross-validation procedure was employed using a 10-fold Stratified Group K-Fold 339 

(StratifiedGroupKFold; https://scikit-340 

learn.org/1.5/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html) for both 341 

the inner loop, which focused on hyperparameter tuning and model selection, and the outer 342 

loop, which assesses the overall model performance, ensuring samples from the same individual 343 

(grouped by 'Person ID') were not split across folds. This process was repeated 10 times to 344 

obtain different random splits and provide a more robust estimate of the models' performance. 345 

Models and Hyperparameter Tuning: We selected two machine learning models: Random 346 

Forest (RF) and Linear Support Vector Machine (LSVM). RF was chosen for its ability to 347 

handle complex feature interactions and provide valuable feature importance scores. LSVM is 348 

effective for high-dimensional spaces, robust against overfitting, and particularly suitable for 349 

small datasets, using a regularization parameter to manage noisy data. Hyperparameter tuning 350 

was performed using GridSearchCV (https://scikit-351 

learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html) with the same 352 

StratifiedGroupKFold cross-validation strategy to find the best hyperparameters for each 353 

https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.GridSearchCV.html


model. For RF, the hyperparameters tuned included n_estimators, max_depth, 354 

min_samples_split, and min_samples_leaf. For LSVM, the hyperparameters tuned included C 355 

and max_iter. 356 

Model Evaluation: Each tuned model was evaluated using 10-fold StratifiedGroupKFold 357 

cross-validation on the training set to estimate generalization performance, with this process 358 

repeated 10 times for robustness. The models were then trained on the entire training set and 359 

tested on the hold-out test set, resulting in 100 total tests. Evaluation metrics, including accuracy 360 

(the overall percentage of correct predictions) and F1-score (a harmonic mean of precision and 361 

recall, where precision measures the proportion of correctly predicted instances of a class out 362 

of all predicted instances, and recall measures the proportion of correctly predicted instances of 363 

a class out of all actual instances of that class), were collected from the test sets of the outer 364 

cross-validation loop, along with confusion matrices to visualize performance. These metrics 365 

and the confusion matrix provide a comprehensive evaluation of the model's performance 366 

across different classes, highlighting both strengths and areas for improvement. The models 367 

were then trained on the entire training set and tested on the hold-out test set, resulting in 100 368 

total tests. Evaluation metrics, including accuracy (the overall percentage of correct predictions) 369 

and F1-score (a harmonic mean of precision and recall, where precision measures the proportion 370 

of correctly predicted instances of a class out of all predicted instances, and recall measures the 371 

proportion of correctly predicted instances of a class out of all actual instances of that class), 372 

were collected from the test sets of the outer cross-validation loop, along with confusion 373 

matrices to visualize performance. 374 

Feature Importance Analysis: To understand the contribution of each feature to the models' 375 

predictions, we extracted feature importances from the RF model and the absolute values of the 376 

LSVM coefficients from the models trained during the outer cross-validation splits. Feature 377 

importances were averaged, and standard deviations were computed to assess the models’ 378 



variability. This analysis identifies the most significant features contributing to predicting 379 

training levels across both models and assesses the consistency of the results. 380 

2.8. Statistical data analysis  381 

All reported metrics in Section 2.5 were computed independently for each measurement time 382 

(T0, T1, and T2). We used repeated measures ANOVAs to compare these metrics across the 383 

three time points, followed by Tukey post-hoc tests for significant results to identify specific 384 

differences. One-sample t-tests were used to test whether performance was significantly 385 

different from the chance level in recognition and discrimination tasks. In the machine-learning 386 

analysis, one-tailed significance tests were performed to estimate the likelihood that the chance 387 

level (33% for a 3-class problem) is the mean of the distribution of decoding accuracies from 388 

multiple train/test splits. Additionally, a paired t-test was conducted to compare the accuracies 389 

of the RF and LSVM models. On all reported-statistics, Bonferroni correction was applied to 390 

all p-values for multiple comparisons. A p-value < 0.050 was considered as demonstrating 391 

significant effect. 392 

2.9. Software and libraries for data analysis 393 

All data preprocessing and analysis were performed using Python (https://www.python.org/). 394 

The following packages and libraries were utilized: numpy (Harris et al., 2020) and pandas 395 

(McKinney, 2010; The pandas development team, 2024) for data handling and manipulation, 396 

SpaCy (Honnibal and Montani, 2017) for tokenization, Part-of-speech tagging, and 397 

lemmatization  for lemmatization, matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) for 398 

creating visualizations, and Scikit-learn for scaling, normalizing and ML analyses (Pedregosa 399 

et al., 2011). These tools collectively facilitated comprehensive text processing, linguistic 400 

analysis, and visualization. Jamovi software (The jamovi project, 2024), a free open-source 401 

https://www.python.org/


statistical tool with a user-friendly graphical interface built on R, was used for statistical 402 

analyses. 403 

3. Results 404 

3.1. Description and Evocation tasks 405 

Description task 406 

The average number of words used in odor descriptions was assessed over three time periods 407 

(Figure 1A). We found a significant effect of time on the number of words used (F(2, 78) = 408 

40.30, p < 0.001). Specifically, the average number of terms was lowest at T0 and progressively 409 

increased through T1 to T2. The number of words increased significantly from T0 to T1 (Mean 410 

Difference = -0.950, SE = 0.353, p = 0.031) and from T1 to T2 (Mean Difference = -1.713, SE 411 

= 0.242, p < 0.001), as well as from T0 to T2 (Mean Difference = -2.663, SE = 0.297, p < 412 

0.001).  413 

We then analyzed the average number of nouns, adjectives, and verbs in the odor descriptions 414 

over time (Figures 1B & 1C). All descriptions consisted of word lists, with no actual 415 

sentences present, resulting in the absence of any verbs. Similar to the trend observed with the 416 

number of words, there was an effect of time on the number of nouns (F(2, 78) = 3.31, p = 417 

0.042), with a significant increase in the number of nouns from T0 to T2 (Mean Difference = 418 

-1.225, SE = 0.476, p = 0.042), but no significant differences between T0 and T1 (Mean 419 

Difference = -0.550, SE = 0.533, p = 0.562) and T1 and T2 (Mean Difference = -0.675, SE = 420 

0.415, p = 0.247). The number of adjectives was also significantly influenced by time (F(2, 421 

78) = 48.50, p < 0.001). An incremental increase in the use of adjectives over time was 422 

demonstrated with an increase from T0 to T1 (Mean Difference = -1.48, SE = 0.381, p < 423 

0.001) and from T1 to T2 (Mean Difference = -2.52, SE = 0.407, p < 0.001), as well as from 424 



T0 to T2 (Mean Difference = -4.00, SE = 0.443, p < 0.001). In conclusion, students used more 425 

words, nouns, and adjectives to describe odors as their learning progressed. 426 

 427 

Figure1. Odor description task. Increases in the average number of words (A), nouns (B), and adjectives (C) over 428 

time (T0, T1 and T2) when describing odors. Error bars represent standard deviations. * indicates p < 0.05, and 429 

*** indicates p < 0.001. 430 

In a second step, we explored the changes in lexical diversity within and between students’ odor 431 

descriptions over time using the TTR diversity score and 𝑐𝑜𝑠𝜃 semantic similarity. While the 432 

within-students TTR remained close to 1, indicating maximal diversity, and was relatively 433 

stable over time (F(2, 78) = 1.60, p = 0.209; Figure 2A), within-participant semantic similarity 434 

significantly changed over time (F(2, 74) = 14.90, p < 0.001; Figure 2C). There were significant 435 

increases in semantic similarity between T0 and T1 (Mean Difference = -0.081, SE = 0.030, p 436 

= 0.031), T1 and T2 (Mean Difference = -0.078, SE = 0.029, p = 0.031), and T0 and T2 (Mean 437 

Difference = -0.160, SE = 0.029, p < 0.001). These results suggest that, over time, students used 438 

a distinct yet increasingly specific and semantically similar set of words to describe each odor.  439 

The between-student TTR diversity score changed over time (F(2, 78) = 5.23, p = 0.007; Figure 440 

2B), with a significant decrease in lexical diversity between T0 and T2 (Mean Difference = 441 

0.146, SE = 0.042, p = 0.004), but no significant differences between T0 and T1 or T1 and T2 442 

(p > 0.245). We also found a significant effect of time on between-participant semantic 443 



similarity (F(2, 78) = 90.90, p < 0.001), with incremental increases across the three time points: 444 

T0 and T1 (Mean Difference = -0.082, SE = 0.013, p < 0.001), T1 and T2 (Mean Difference = 445 

-0.065, SE = 0.010, p < 0.001), and T0 and T2 (Mean Difference = -0.147, SE = 0.010, p < 446 

.001) (Figure 2D). This result reflects an increase in the specificity of words used by students 447 

over time, confirming greater homogeneity in their vocabulary. 448 

In addition, we examined the semantic similarity between students' answers and an expert 449 

teacher and found a significant effect of time (F(2, 78) = 5.82, p = 0.004; Figure 2E), with 450 

significant increase between T0 and T2 (Mean Difference = -0.073, SE = 0.022, p = 0.006), but 451 

no significant differences between T0 and T1 (p = 0.191) and T1 and T2 (p = 0.418). Finally, 452 

the analysis of the semantic similarity of descriptions for each odor across the three time points 453 

demonstrated a significant effect of time (F(2, 22) = 21.50, p < 0.001; Figure 2F), with odors 454 

being more similarly described at T2 than T0 (Mean Difference = -0.164, SE = 0.027, p < 0.001) 455 

and T1 (Mean Difference = -0.154, SE = 0.034, p = 0.002), but no significant difference 456 

between T0 and T1 (Mean Difference = -0.010, SE = 0.022, p = 1.000). These results indicate 457 

that over time, students’ descriptions become more aligned with the expert's descriptions and 458 

more consistent in how each odor is described, corroborating the increased precision and 459 

standardization in their vocabulary. 460 



 461 

Figure 2. Odor description task. Changes in lexical diversity using Type-Token Ratio (TTR) within (A) and 462 

between (B) students, and changes in semantic similarity within (C) and between (D) students, with an expert 463 

teacher (E), and by odor (F) over time (T0, T1, T2) when describing odors. Error bars represent standard deviations. 464 

* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 465 

Evocation task 466 

No significant effect of time was found on the average number of words (Mean = 1.673, SE = 467 

0.514, F(2, 78) = 2.06, p = 0.134), nouns (Mean = 1.228, SE = 0.452, F(2, 78) = 0.47, p = 468 

0.630), adjectives (Mean = 0.290, SE = 0.221, F(2, 78) = 0.83, p = 0.439), and verbs (Mean = 469 

0.111, SE = 0.206, F(2, 78) = 1.43, p = 0.245) in the evocation responses.  470 



The analysis of lexical diversity within-students’ odor evocations using TTR diversity score did 471 

not reveal significant differences of TTR over time (TTRwithin: Mean = 0.97, SE = 0.07, F(2, 472 

78) = 1.080, p = 0.346), but showed a significant effect of time on semantic similarity (F(2, 76) 473 

= 6.04, p = 0.004; Figure 3A), with similarity being higher at T2 than T0 (Mean Difference = -474 

0.087, SE = 0.025, p = 0.004) but similar between T0 and T1 (Mean Difference = -0.031, SE = 475 

0.024, p = 0.637) and T1 and T2 (Mean Difference = -0.056, SE = 0.026, p = 0.119). This result 476 

suggests that as students progressed in their training, the words they used became increasingly 477 

semantically similar. 478 

When comparing between-participant lexical diversity, we found that while TTR diversity score 479 

showed no effect of time (TTRbetween: Mean = 0.416, SE = 0.193, F(2, 78) = 1.080, p = 0.337), 480 

semantic similarity significantly changed over time (F(2, 78) = 35.00, p < 0.001; Figure 3B), 481 

with significant increases in similarity between T0 and T1 (Mean Difference = -0.026, SE = 482 

0.009, p = 0.014), T1 and T2 (Mean Difference = -0.053, SE = 0.011, p < 0.001), and T0 and 483 

T2 (Mean Difference = -0.079, SE = 0.009, p < .001). This result indicates increased similarity 484 

in the students' vocabulary over time, reflecting greater semantic homogeneity in the words 485 

they used. 486 

In addition, the semantic similarity of evocations for each odor significantly evolved with time 487 

(F(2, 22) = 11.20, p < 0.001; Figure 3C), with significant decreases between T0 and T1 (Mean 488 

Difference = 0.063, SE = 0.015, p = 0.005) and T2 and T1 (Mean Difference = -0.105, SE = 489 

0.023, p = 0.002), but no difference between T0 and T2 (Mean Difference = -0.042, SE = 0.027, 490 

p = 0.462). These results indicate that over time, students’ evocations were less consistent at 491 

T1 than at T0 and T2, suggesting an effect of time unrelated to their level of training. Finally, 492 

given that the evocation task is related to personal experiences and memories, we did not run 493 

similarity comparisons to a reference. 494 



 495 

Figure3. Odor evocation task. Changes in cosine similarity (cos𝜃) within (A) and between (B) students and by 496 

odor (C) over time (T0, T1, T2) during odor-evoked evocations. Error bars represent standard deviations. * 497 

indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. 498 

3.2.Discrimination task 499 

The Odor Discrimination Score was evaluated at three time points (T0, T1, T2). At T0, the 500 

mean score was 45.00% (SD = 27.79%), which was significantly above the chance level of 501 

33.33% (t(39) = 2.66, p = 0.011). At T1, the mean score was 59.17% (SD = 25.58%), also 502 

significantly above chance (t(39) = 6.39, p < 0.001). At T2, the mean score was 53.33% (SD = 503 

28.04%), and it remained significantly above the chance level (t(39) = 4.51, p < 0.001). 504 

In addition to these comparisons against chance level, the within-students effect of time was 505 

evaluated. The analysis revealed a marginally significant effect of time on performance (F(2, 506 

78) = 3.120, p = 0.050), with no significant differences between T0 and T1 (Mean Difference 507 

= -0.425, SE = 0.189, p = 0.091), T0 and T2 (Mean Difference = -0.250, SE = 0.159, p = 0.373), 508 

and T1 and T2 (Mean Difference = 0.175, SE = 0.164, p = 0.874). 509 

Overall, these results suggest that students' performance at each time point was significantly 510 

better than random guessing. However, while Odor Discrimination Scores tend to fluctuate over 511 

time, the differences between time points did not reach significance.  512 



3.3. Olfactory and visual recognition tasks 513 

Odor recognition task 514 

The students were presented with target and distractor odors and were asked if they had smelled 515 

them the day before. Memory scores were high (d’L: Mean = 1.669; SE = 1.385), indicating 516 

proficiency in recognizing old odors and rejecting new ones at all measurement times (Figure 517 

4A). d’L scores were significantly above chance at each measurement time: T0 (Mean = 1.324, 518 

SD = 1.281, t(39) = 6.54, p < 0.001), T1 (Mean = 1.631, SD = 1.497, t(39) = 6.89, p < 0.001), 519 

and T2 (Mean = 2.051, SD = 1.301, t(39) = 9.97, p < 0.001), demonstrating robust recognition 520 

performance across time points. 521 

However, the increase in d’L over time did not reach statistical significance (F(2,78) = 3.00, p 522 

= 0.056). When examining correct response categories individually, a significant effect of time 523 

was found for correct rejections (CR) (F(2,78) = 4.35, p = 0.016; Mean = 6.858; SD = 1.789; 524 

Figure 4B), with a significant increase in the number of CRs between T0 and T2 (Mean 525 

Difference = -1.00, SE = 0.36, p = 0.025). No effect of time was observed on the number of 526 

Hits (F(2,78) = 0.78, p = 0.460; Mean = 6.875; SD = 1.771). The response bias was close to 527 

zero at all time points, indicating no specific response strategy [CLT0: Mean = -0.055, SD = 528 

0.525; CLT1: Mean = -0.028, SD = 0.518; CLT2: Mean = 0.085, SD = 0.624] and was not 529 

influenced by time (F(2,78) = 0.89, p = 0.428). 530 

 531 



Figure4. Recognition Performance in Olfactory and Visual Tasks. (A) Mean d’L scores for the olfactory task over 532 

time. (B) Mean number of correct rejections (CR) for the olfactory task over time (10 distractors). (C) Mean d’L 533 

scores for olfactory and visual tasks. Error bars represent standard deviations. '#' indicates a trend (p = 0.056), * 534 

indicates p < 0.05, and *** indicates p < 0.001. 535 

Visual recognition task 536 

In the visual recognition task, memory scores were very high, indicating strong proficiency in 537 

recognizing old images and rejecting new ones at all measurement times (d’L: Mean = 4.068; 538 

SD = 0.167). d’L scores were significantly above chance for each measurement time: T0 (Mean 539 

= 3.789, SD = 1.898, t(39) = 12.63, p < 0.001), T1 (Mean = 4.403, SD = 1.429, t(39) = 19.49, 540 

p < 0.001), and T2 (Mean = 4.011, SD = 2.083, t(39) = 12.18, p < 0.001), highlighting 541 

consistently strong visual recognition performance. 542 

Visual memory scores were significantly higher than olfactory memory scores (F(1,39) = 543 

131.54, p < 0.001; Figure 4C), illustrating that the visual memory task was easier for students 544 

than the olfactory memory task. However, for the visual task, there was no effect of time on 545 

either d’L memory scores or CL individual response categories (F’s < 1.90; p’s > 0.152). 546 

Finally, the response bias was close to zero at all time points (CLT0: Mean = -0.017, SD = 0.734; 547 

CLT1: Mean = -0.014, SD = 0.508; CLT2: Mean = -0.054, SD = 0.613), indicating no specific 548 

response strategy, and was not influenced by time (F(2,78) = 0.22, p = 0.807). 549 

3.4. Odor categorization task and Categories description 550 

Odor categorization task 551 

No significant effect of time was shown on the number of groups created by students (F(2, 76) 552 

= 1.65, p = 0.20; Mean = 6.342; SD = 1.738). The analysis of inter-student agreement indicated 553 

no agreement regarding the categories of odors created [Cohen's Kappa: Mean = 0.008, SD = 554 

0.024] and showed no significant effect of time on agreement (F(2, 76) = 0.249, p = 0.780). 555 

However, the similarity of odors pairwise clustering (ARI) between students significantly 556 



varied with time (F(2, 76) = 17.30, p < 0.001; Figure 5A). There were significant increases 557 

between T0 and T1 (Mean Difference = -0.040, SE = 0.009, p < .001) and T0 and T2 (Mean 558 

Difference = -0.061, SE = 0.011, p < 0.001), but no significant difference between T1 and T2 559 

(Mean Difference = -0.021, SE = 0.012, p = 0.227).  560 

In addition, the analysis also revealed no agreement between students and the expert teacher 561 

regarding the categories of odors created [Cohen’s Kappa: Mean = -0.034, SD = 0.100], and no 562 

significant effect of time was found (F(2, 76) = 0.863, p = 0.426). However, the similarity of 563 

odors pairwise clustering between students and the expert teacher significantly differed with 564 

time (F(2, 76) = 3.260, p = 0.044), with a significant increase between T0 and T1 (Mean 565 

Difference = -0.066, SE = 0.022, p = 0.015), but no significant differences between T0 and T2 566 

(Mean Difference = -0.052, SE = 0.029, p = 0.233) and between T1 and T2 (Mean Difference 567 

= 0.014, SE = 0.030, p = 1.000). 568 

Overall, while categorical agreement remained stable over time between students and the expert 569 

teacher, the pairwise similarity of clustering increased with training, both among students and 570 

between students and the expert teacher. 571 

 572 

Figure5. Odor categorization task. Changes of between-students (A) pairwise odors clustering similarity (ARI), 573 

(B) lexical diversity (TTR), and (C) semantic similarity (𝑐𝑜𝑠(𝜃)) scores between students over time (T0, T1, T2). 574 

Error bars represent standard deviations. *** indicates p < 0.001. 575 

Description of odor categories  576 



A significant effect of time on the average number of words was found (F(2,76) = 3.36, p = 577 

0.040), showing a slight increase between T0 (Mean = 1.749, SD = 0.558) and T1 (Mean = 578 

2.090, SD = 0.922) but no significant differences were found with T3 (Mean = 1.981, SD = 579 

0.759; p’s > 0.25). No effect of time was revealed for the average number of nouns (Mean = 580 

3.949, SD = 2.137; F(2,76) = 1.580, p = 0.213), nor adjectives (Mean = 6.017, SE = 2.626; 581 

F(2,76) = 0.514, p = 0.600). No verb was found in the verbal descriptions.  582 

The between-participant lexical diversity (TTR) and semantic similarity (𝑐𝑜𝑠(𝜃)) significantly 583 

differed over time (TTRbetween: F(2,76) = 14.800, p < .001; 𝑐𝑜𝑠(𝜃)between: F(2,76) = 50.800, p < 584 

.001; Figure 5B-C). There were significant decreases of lexical diversity between T0 and T1 585 

(TTR Mean Difference = 0.20, SD = 0.04, p < 0.001) and T0 and T2 (TTR Mean Difference = 586 

0.196, SD = 0.041, p < 0.001) but not between T1 and T2 (TTR Mean Difference = -0.002, SD 587 

= 0.039, p = 1.000). Conversely, we found significant increases of semantic similarity between 588 

T0 and T1 (Mean Difference = -0.101, SD = 0.012, p < 0.001), T0 and T2 (Mean Difference = 589 

-0.091, SD = 0.011, p < 0.001), but not between T1 and T2 (Mean Difference = 0.009, SD = 590 

0.009, p = 0.984). Given that the principle of the categorization task is to create different groups 591 

with specific descriptions, we did not run TTR and similarity comparisons within-students’ 592 

categories. 593 

To sum-up, while the average number of words in category descriptions slightly increased over 594 

time, no significant changes were observed in the use of nouns or adjectives. However, there 595 

was a significant decrease in lexical diversity and a significant increase in semantic similarity 596 

between students’ verbalizations over time, indicating a trend towards more homogeneous and 597 

semantically aligned verbal descriptions. 598 



3.5.Temporal dynamic of learning 599 

Students’ progress dynamics were analyzed over time. Students’ performance profile was 600 

created by combining their scores on the 14 metrics significantly affected by time (Table S2). 601 

The within-students effect of time was found to be significant (F(2, 76) = 10.66, p < 0.001; 602 

Figure 6A), with a linear and consistent increase in performance over time. Significant 603 

differences in progress were observed between T0-T1 and T0-T2 (Mean Difference = -0.685, 604 

SE = 0.187, p = 0.002), and between T1-T2 and T0-T2 (Mean Difference = -1.027, SE = 0.210, 605 

p < 0.001). However, no significant difference was found between T0-T1 and T1-T2 (Mean 606 

Difference = 0.341, SE = 0.254, p = 0.515). Overall, these results suggest that students’ progress 607 

was consistent from T0 to T1 and from T1 to T2. 608 

 609 

Figure6. Temporal dynamics of students’ learning. (A) Changes of within-students’ performance over reflecting 610 

their progress as their training progressed, and (B) Changes of between-students’ performance over time showing 611 

the heterogeneity of performance between students at each time (T0, T1, T2). Error bars represent standard 612 

deviations. **, indicates p < 0.01; *** indicates p < 0.001 613 

The heterogeneity of performance between students was evaluated based on the score 614 

differences between each pair of students at each time measurement (T0, T1, and T2). The 615 

effect of time on the heterogeneity of performance was significant (F(2, 1480) = 29.00, p < 616 



0.001; Figure 6B), with a greater heterogeneity at T1 compared to T0 (Mean Difference = 0.241, 617 

SE = 0.064, p < 0.001) and T2 (Mean Difference = 0.429, SE = 0.054, p < 0.001). However, 618 

heterogeneity was lower at T2 than at T0 (Mean Difference = -0.188, SE = 0.050, p < 0.001). 619 

These results suggest that the initial heterogeneity of students’ profiles at T0 increased by T1, 620 

indicating varying speeds of learning among students. By T2, the heterogeneity decreased to a 621 

level even below the initial point, reflecting a convergence in the learning levels of students. 622 

3.6. Predicting students’ training levels 623 

Given the clear changes in performance over time, we explored whether it was possible to 624 

identify students' level of training with high accuracy based on their performance across tasks 625 

using Random Forest (RF) and Linear Support Vector Machine (LSVM) classifiers. 626 

On average, the best performance was obtained with the RF classifier, which correctly 627 

identified the students' training level 78.9% of the time, with a margin of error of ±11.1% 628 

(Figure 7A). The statistical analysis showed that the accuracy score was highly significant (t = 629 

41.30; one-tailed corrected p-value < 0.001), and the model achieved an F1-score of 0.783 ± 630 

0.113, indicating strong performance in both precision (accuracy of positive predictions) and 631 

recall (ability to find all relevant instances). For the RF classifier, the most crucial features were 632 

the semantic similarities of odor descriptions among students (description_sim-BTW) and the 633 

semantic similarities between odor category verbalizations among students 634 

(categorisation_sim-BTW; Figure 7B). 635 

The SVM classifier also performed well, correctly identifying the training level of students 636 

74.2% of the time, with a margin of error of ± 6.9% (t = 59.173; one-tailed corrected p-value < 637 

0.001; Figure 7A), and an F1-score of 0.728 ± 0.076, indicating good overall performance of 638 

the model across all classes. The feature importance analysis for the SVM classifier (Figure 7C) 639 

also highlighted the importance of the semantic similarities between students' responses 640 



measured in the description and the verbalization part of the categorization tasks in determining 641 

the training level of students. 642 

 643 

Figure7. Feature Importances and Model Accuracies of students’ level of training predictions. (A) Test accuracies 644 

for the RF and LSVM models. (B) Top 6 feature importances for the Random Forest (RF) classifier. (C) Top 6 645 

feature importances for the Linear Support Vector Machine (LSVM) classifier. Error bars represent standard 646 

deviations. *** indicates p < 0.001. Adj: adjectives; Cat: categorization task; Desc: description task; NB: number; 647 

Rec-olf: odor recognition task. 648 

When directly comparing the performance of the RF and LSVM classifiers, the model 649 

comparison indicated that the RF model significantly outperformed the LSVM model (t = 650 

4.101; p < 0.001). This suggests that the RF model, with its large number of estimators and 651 

fully grown trees, was better suited for capturing the underlying patterns in the perceptual and 652 

cognitive data, leading to its superior performance compared to the LSVM classifier. The full 653 

hyperparameters tuning results are summarized in Table S3.  654 

4. Discussion 655 

The primary objective of this research was to examine how academic olfactory training during 656 

a 1.5-year educational program impacts the development of olfactory expertise in perfumery 657 

students. The study focused on a broad range of tasks, including odor description, evocation, 658 

recognition, discrimination, and categorization. Our main findings reveal that while students 659 

demonstrated significant improvement in their ability to describe and categorize odors—660 



reflected in richer (words, nouns, adjectives count) and more consistent language (TTR scores 661 

and cos𝜃 similarity), and its greater alignment with expert terminology (cos𝜃 similarity)—their 662 

non-verbally mediated abilities, such as odor discrimination and recognition accuracies, did not 663 

show substantial enhancement over time. 664 

Our results demonstrate that as students progressed through the training program, their 665 

vocabulary and descriptive abilities expanded, evidenced by an increased use of words, nouns, 666 

and adjectives to describe odors. Over time, however, lexical diversity within the student group 667 

decreased, while semantic similarity increased—both among students and between students and 668 

the expert teacher. This indicates a homogenization of vocabulary, as students adopted a more 669 

standardized language for odor description. This convergence suggests that the training not only 670 

enriched their descriptive repertoire but also guided them toward a shared, expert-aligned 671 

terminology. Interestingly, the number of words used in odor-evoked evocations did not change 672 

significantly over time, yet semantic similarity increased within and between students. This 673 

implies that while students did not elaborate more in terms of word count when recalling odor-674 

associated memories, their language became more semantically aligned. This reflects the 675 

influence of training on the conceptualization and verbal encoding of olfactory experiences, 676 

facilitating more efficient retrieval and communication of olfactory information (Larsson and 677 

Willander, 2009). These findings align with previous research indicating that professional 678 

perfumers use more detailed and precise language focusing on chemical and olfactory qualities 679 

(Sezille et al., 2014) and that olfactory cognitive abilities can be improved with training (Royet 680 

et al., 2013). 681 

In addition to improvements in descriptive abilities, our findings reveal significant changes in 682 

how students categorized odors over time. While the number of groups created and the 683 

categorical agreement among students did not change significantly, the similarity of pairwise 684 

odor clustering between students increased. This suggests that as students progressed through 685 



the training, they began grouping odors in increasingly similar ways, reflecting a convergence 686 

in their perceptual representation of odors. Moreover, although the average number of words 687 

used in category descriptions increased slightly, there was a noticeable decrease in lexical 688 

diversity and a significant increase in semantic similarity among students' verbalizations. In 689 

other words, students used fewer unique terms and described odors in ways that were more 690 

aligned with one another. The increased alignment in odor grouping and the standardization of 691 

vocabulary suggest that students are developing a shared terminology for categorizing odors. 692 

Our results highlight the central role of language in structuring olfactory knowledge, and align 693 

with prior cross-cultural findings highlighting the variability of odor lexicons and the 694 

importance of consistent linguistic frameworks for olfactory description (Majid, 2021). Studies 695 

on languages such as Jahai and Maniq demonstrate that dedicated lexical fields for odors can 696 

emerge when olfactory experience is consistently emphasized and linguistically encoded 697 

(Majid and Burenhult, 2014). These findings challenge the notion proposed by Olofsson and 698 

Gottfried that olfactory naming difficulties are primarily rooted in neural anatomical constraints 699 

(Olofsson and Gottfried, 2015). Instead, our results support the idea that developing olfactory 700 

expertise and a shared vocabulary for odors is not only possible but also heavily influenced by 701 

academic training practices. 702 

Despite the observed improvements in verbally-mediated and categorization tasks, our study 703 

did not reveal significant enhancements in non-verbally mediated abilities such as odor 704 

discrimination and recognition. The odor discrimination scores showed no significant 705 

improvement over time, and while there was a trend toward better odor recognition 706 

performance, it did not reach statistical significance. These findings are consistent with research 707 

by Filiz et al. (2022), who found no substantial improvement in discrimination or recognition 708 

abilities in wine students over a similar period of training. This lack of improvement could be 709 

attributed to several factors. First, high-order non-verbally mediated tasks such as odor 710 



discrimination and recognition may require extensive and more prolonged exposure to a wider 711 

variety of odors to see measurable changes (Royet et al., 2013), which might not have been 712 

fully achieved within the duration of our study. Second, prior research suggests that olfactory 713 

training effects are often task-specific and may not generalize across different odor categories 714 

(Bende and Nordin, 1997; Parr et al., 2002; Croijmans and Majid, 2016; Poupon et al., 2018). 715 

At ISIPCA, students are trained using a structured curriculum that focuses on the gradual 716 

introduction of raw materials classified by olfactory families, progressing from simpler to more 717 

complex odors. While this approach strengthens categorical organization and verbal 718 

descriptors, it may also reinforce expertise within specific odor categories rather than promoting 719 

broader generalization across categories. For instance, training sessions often emphasize 720 

identifying and describing fragrances or flavors within specific families, such as fruity, floral, 721 

or toasted, which could limit the transfer of perceptual skills to novel or less familiar odor 722 

groups. Another plausible factor is that the methods employed in this study, including task 723 

design and stimuli selection, may not have been sensitive enough to capture subtle changes in 724 

olfactory performance. 725 

The use of natural language processing (NLP) and machine learning (ML) tools in this study 726 

provided valuable insights into olfactory expertise, reinforcing the centrality of language in its 727 

acquisition. These computational methods allowed us to capture subtle patterns in language use, 728 

uncovering links between linguistic descriptors and expertise that would have been overlooked 729 

with more traditional approaches. Features related to verbal tasks—such as the richness and 730 

precision of odor descriptions, the use of specific olfactory terminology, and semantic similarity 731 

measures in the description and categorization tasks—were the strongest predictors of students' 732 

performance and expertise levels. Without NLP and ML techniques, the effects of olfactory 733 

training on expertise would have gone undetected. This highlights the potential and importance 734 



of NLP and ML methods for better characterizing olfactory language and expertise, as well as 735 

refining training methodologies. 736 

Our effort to better characterize the semantic properties of olfactory language aligns with other 737 

computational approaches that have recently emerged to deepen our understanding of olfactory 738 

perception and its connection to language and expertise. For instance, Iatrapoulos et al. (2018) 739 

introduced new metrics—the Olfactory Association Index (OAI) and Olfactory Specificity 740 

Index (OSI)—to quantitatively assess how strongly words are associated with olfaction and 741 

how specifically they describe odors. Similarly, Hörberg et al. (2022) mapped the olfactory 742 

vocabulary of English using NLP techniques, identifying semantic dimensions such as valence, 743 

concreteness, and edibility that organize the olfactory lexicon. Another study by Hörberg et al. 744 

(2025) compared sensory vocabularies across domains such as wine, perfume, and food using 745 

computational methods, revealing critical differences in domain specificity, descriptor 746 

preferences, and semantic dimensions. These studies highlight how computational analyses of 747 

large-scale textual data can uncover the linguistic structures underlying sensory descriptions 748 

and expertise.  749 

Collectively, these computational approaches to olfactory language underscore the usefulness 750 

of NLP and ML tools not only for characterizing olfactory expertise but also for advancing 751 

training methodologies in olfactory and sensory sciences. By leveraging these innovative 752 

methods, we can gain deeper insights into the verbal underpinnings of olfactory expertise, and 753 

develop more effective strategies for training and assessment. 754 

The olfactory training program at ISIPCA demonstrates considerable effectiveness in enabling 755 

students to develop and utilize a precise, shared language for describing and categorizing odors. 756 

Through structured exercises, systematic exposure, and standardized verbalization practices, 757 

students progressively refine their vocabulary, achieving greater alignment with expert 758 

terminology. While these findings underscore the program’s proficiency in fostering linguistic 759 



and conceptual frameworks critical for olfactory expertise, there remains scope for further 760 

refinement. Building upon this solid foundation, our results, supported by prior research, 761 

suggest three key areas that could further optimize training outcomes. 762 

Firstly, emphasizing vocabulary specificity and encouraging the consistent use of standardized 763 

terminology can strengthen associative links between odors and their descriptions, facilitating 764 

memory and conceptualization. The structured language training followed at ISIPCA, where 765 

students repeatedly smelled, described, and classified raw materials using Jaubert’s field of 766 

odors (1995), already demonstrated how systematic exposure and verbalization promote the 767 

development of a precise and shared olfactory lexicon. To further enhance this approach, the 768 

introduction of a shared textual vocabulary dictionary could ensure that all students have access 769 

to a unified reference for describing odors. This resource would serve as a foundational tool for 770 

communication and conceptual alignment, reinforcing the consistent use of shared language 771 

across both students and teachers. 772 

Secondly, integrating mental imagery training into the curriculum could enhance cognitive 773 

skills crucial for perfumers. Research by Plailly et al. (2012) showed that olfactory mental 774 

imagery is central to perfumers' daily tasks and improves significantly with training. Croijmans 775 

et al. (2020) demonstrated that mental olfactory imagery can be developed through targeted 776 

practice rather than being an inherent ability. Similarly, Stevenson et al. (2007) found that 777 

training in odor naming enhances mental imagery by providing verbal anchors that strengthen 778 

cognitive associations. Given the structured exercises in ISIPCA training program, such as 779 

identifying raw materials blindly and describing their volatility, incorporating explicit mental 780 

imagery tasks could complement these activities and support students in imagining, recalling, 781 

and categorizing odors more effectively. Testing these processes in future studies would clarify 782 

how mental imagery integrates with verbal and perceptual learning to build olfactory expertise. 783 



Thirdly, since improvements in perceptual abilities such as odor discrimination may be slower, 784 

training programs could incorporate prolonged exposure to a wider variety of odors and more 785 

intensive discrimination tasks. This could include differentiating subtle variations in odor 786 

mixtures or thresholds, as suggested by Morquecho-Campos et al. (2019) and Poupon et al. 787 

(2018). For instance, ISIPCA program already introduced students to a progression of odor 788 

intensities and complex combinations through structured sessions, but future designs might 789 

integrate targeted exercises to refine sensory acuity further. These could involve evaluating 790 

persistence and volatility or focusing more extensively on odor combinations to sharpen 791 

discrimination and perceptual organization. 792 

Moreover, our study highlights the dynamics of learning over time and individual differences 793 

among students. Greater variability in performance observed at the midpoint of training (T1) 794 

suggests that individuals progress at different rates. By the end of the program (T2), 795 

performance levels converged, indicating that prolonged training promotes a more uniform 796 

level of expertise. These findings underscore the need for personalized training approaches that 797 

accommodate individual learning trajectories, tailoring intensity and content to optimize 798 

outcomes and help students reach their full potential. 799 

Conclusion 800 

In conclusion, our study highlights the pivotal role of language in the development of olfactory 801 

expertise among perfumery students. Over the course of the 1.5-year training program, students 802 

demonstrated significant improvements in their ability to describe and categorize odors, 803 

developing a richer and more precise olfactory lexicon. These linguistic advancements were 804 

accompanied by increased semantic alignment among students and with expert standards, 805 

underscoring the effectiveness of structured training in fostering a shared vocabulary essential 806 

for professional expertise. However, the findings reveal limitations in the enhancement of non-807 

verbally mediated abilities, such as odor discrimination and recognition. This disparity suggests 808 



that while acquiring a shared olfactory language is crucial for developing conceptual and 809 

descriptive skills, perceptual expertise may require more extensive or targeted sensory 810 

exercises. Our study highlights the need for complementary strategies, including prolonged 811 

exposure to diverse odor profiles, mental imagery training, and personalized training 812 

approaches tailored to individual learning trajectories, to fully support the multifaceted nature 813 

of olfactory expertise. Finally, our results also underscore the value of computational 814 

approaches, such as natural language processing (NLP) and machine learning (ML), in 815 

characterizing olfactory expertise and refining training methodologies. Future research should 816 

explore these approaches to deepen our understanding of how olfactory expertise emerges. 817 
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10. Figure Legends 947 

Figure1. Odor description task. Increases in the average number of words (A), nouns (B), and 948 

adjectives (C) over time (T0, T1 and T2) when describing odors. Error bars represent standard 949 

deviations. * indicates p < 0.05, and *** indicates p < 0.001. 950 

Figure 2. Odor description task. Changes in lexical diversity using Type-Token Ratio (TTR) 951 

within (A) and between (B) students, and changes in semantic similarity within (C) and between 952 

(D) students, with an expert teacher (E), and by odor (F) over time (T0, T1, T2) when describing 953 

odors. Error bars represent standard deviations. * indicates p < 0.05, ** indicates p < 0.01, and 954 

*** indicates p < 0.001. 955 

Figure3. Odor evocation task. Changes in cosine similarity (cos𝜃) within (A) and between 956 

(B) students and by odor (C) over time (T0, T1, T2) during odor-evoked evocations. Error bars 957 

represent standard deviations. * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 958 

0.001. 959 

Figure4. Recognition Performance in Olfactory and Visual Tasks. (A) Mean d’L scores for 960 

the olfactory task over time. (B) Mean number of correct rejections (CR) for the olfactory task 961 

over time (10 distractors). (C) Mean d’L scores for olfactory and visual tasks. Error bars 962 

represent standard deviations. '#' indicates a trend (p = 0.056), * indicates p < 0.05, and *** 963 

indicates p < 0.001. 964 

Figure5. Odor categorization task. Changes of between-students (A) pairwise odors 965 

clustering similarity (ARI), (B) lexical diversity (TTR), and (C) semantic similarity (𝑐𝑜𝑠(𝜃)) 966 

scores between students over time (T0, T1, T2). Error bars represent standard deviations. *** 967 

indicates p < 0.001. 968 

Figure6. Temporal dynamics of students’ learning. (A) Changes of within-students’ 969 

performance over reflecting their progress as their training progressed, and (B) Changes of 970 



between-students’ performance over time showing the heterogeneity of performance between 971 

students at each time (T0, T1, T2). Error bars represent standard deviations. **, indicates p < 972 

0.01; *** indicates p < 0.001 973 

Figure7. Feature Importances and Model Accuracies of students’ level of training 974 

predictions. (A) Test accuracies for the RF and LSVM models. (B) Top 6 feature importances 975 

for the Random Forest (RF) classifier. (C) Top 6 feature importances for the Linear Support 976 

Vector Machine (LSVM) classifier. Error bars represent standard deviations. *** indicates p < 977 

0.001. Adj: adjectives; Cat: categorization task; Desc: description task; NB: number; Rec-olf: 978 

odor recognition task. 979 
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11. Supplementary materials 981 

Table S1. Exhaustive list of olfactory stimuli 982 

Note. Abs, absolute ; Ess, essence ; EO, essential oil. Perfumes are in italics. Hyperscript letters 983 

referred to odorants that are used together in a mixture 984 



Tasks Odorants Reference 

Evocation and 

description*  

Vegetable 

Spicy grilled 

Pharmaceutical 

Floral 

Sun-soaked Sea scent 

Detergent 

Dried fruit honey 

Musky animal scent 

Late evening 

Green tea 

Fig 

Bin scent 

Formulated at the 

ISIPCA using in-

house recipes 

 

Discrimination  Flowerbomb  

La Vie Est Belle 

La Nuit Trésor 

Black Opium 

L'Homme 

Pink Grape Fruit 

Viktor & Rolf 

Lancôme 

Lancôme 

Yves Saint Laurent 

Yves Saint Laurent 

Hermès 

Recognition T0 Ambrarome 

Thymol 

Borneol 

Nutmeg 

Light blue 

Nactis 

Sigma Aldrich 

Prodasynth 

Robertet 

Dolce Gabbana 



Le REM 

Accord EMMA 

Aromatics in black  

Aromatics in white 

L’Instant Magic  

Eau d’Hadrien  

Apogée 

Contre moi 

Dans la peau 

Matière noire 

Mille feux 

Rose des vents 

Turbulences 

Piment brûlant 

Coach 

Reminiscence 

ISIPCA Formulation 

Clinique 

Clinique 

Guerlain 

A.Goutal 

Vuitton 

Vuitton 

Vuitton 

Vuitton 

Vuitton 

Vuitton 

Vuitton 

Artisan Parfumeur 

New York 

Recognition T1 Dew fruita 

Limon essa 

Phenylacetic acidb 

beta-naphthyl methyl ketoneb 

Chocovanc 

Nutmeg essc 

Damasceniad 

Nootkatoned 

Exaltolided 

Givaudan 

Albert Vieille 

Sigma Aldrich 

BLH PIM 

GIVAUDAN 

Albert Vieille 

FIRMENICH 

PRODASYNTH 

FIRMENICH 



Vertofixe 

Alpha-Iononee 

Cashmeranf 

Ethyl linaloolf 

Ginger essf 

Russian leatherg 

beta-naphthyl methyl ketoneg 

Nerolh 

Anisyl Acetateh 

Manzanatei 

Habanolidei 

Magnolia flowers ess oilj 

Cedramberj 

Fruit sec ©k 

Adoxalk 

Osmanthus absl 

Tamarine basel 

Verdoxm 

Cashmeranm 

Veloutonen 

Viridinen 

Sandaloreo 

Iso E Supero 

Acetate cis 3 hexenylep 

IFF 

Sigma Aldrich 

IFF 

Givaudan 

Albert Vieille 

NACTIS 

BLH PIM 

IFF 

Givaudan 

Givaudan 

FIRMENICH 

LMR 

IFF 

FIRMENICH 

Givaudan 

BLH PIM 

FIRMENICH 

IFF 

IFF 

FIRMENICH 

BLH PIM 

Givaudan 

IFF 

Givaudan 



Rhodinolp 

Terebentine essq 

Vanillinq 

Scentenalr 

Miel Blanc ©r 

Bergamot essr 

Gamma Nonalactones 

Allyl amyl glycolates 

Cyclotenet 

Cuminic aldehydet 

Givaudan 

FIRMENICH 

SOLVAY 

FIRMENICH 

PCW 

Payan & Bertrand 

Sigma Aldrich 

IFF 

Sigma Aldrich 

Givaudan 

Recognition T2 Lime EOu 

Bitter orange EOu 

Verdoxu 

Menthanyl acetatev 

Vertofixv 

Decanalv 

Linalyl acetatew 

Opoponax EOw 

Cis-3-Hexenolx 

Ylang EOx 

Galaxolidey 

Heliotropexz 

Phenoxyethyl isobutyratez 

Isoeugenolz 

Payan & Bertrand 

Robertet 

IFF 

FIRMENICH 

IFF 

Givaudan 

Sigma Aldrich 

FIRMENICH 

PCW 

Albert Vieille 

IFF 

IFF 

Givaudan 

Sigma Aldrich 



Hedioneaa 

Tagetes EOaa 

Benzyl propionateab 

Sandelaab 

Timberolab 

Terpineolac 

Scentenalac 

Benzyl salicylateac 

Methyl salicylatead 

Linalyl propionatead 

Phenoxanolad 

Grapefruit EOae 

Musk Tae 

Menthoneae 

Litsea cubeba EOaf 

Lilialaf 

L-Mentholaf 

Methyl naphthyl ketoneag 

Ethyl vanillinag 

Tonalideag 

Lemon petitgrain EOah 

Ethyl maltolah 

Ocimeneah 

Delta-octalactoneai 

FIRMENICH 

BLH PIM 

Sigma Aldrich 

Givaudan 

BLH PIM 

FIRMENICH 

FIRMENICH 

Sigma Aldrich 

Robertet 

Givaudan 

IFF 

MPE 

Sigma Aldrich 

MANE 

Robertet 

PRODASYNTH 

BLH PIM 

BLH PIM 

SOLVAY 

Sigma Aldrich 

Payan & Bertrand 

MPE 

IFF 

PCW 



Gamma undecalactoneai 

Undecavertolai 

Myrrh EOaj 

Muscenoneaj 

Aldehyde C12 MNAak 

Lemon EOak 

Linalyl acetateak 

Coumarinal 

Cyclogalbanateal 

Virginia cedarwood EOam 

Camphoram 

Cyclamen aldehydeam 

Hexyl salicylatean 

Black pepper EOan 

Gamma-terpineneao 

Gelsolao 

Sigma Aldrich 

Givaudan 

Robertet 

FIRMENICH 

BLH PIM 

Albert Vieille 

Sigma Aldrich 

Sigma Aldrich 

BLH PIM 

Albert Vieille 

Sigma Aldrich 

Givaudan 

PRODASYNTH 

Albert Vieille 

PRODASYNTH 

IFF 

Categorization  Cocoa abs 

Tonka bean abs 

Broom abs 

Hay abs 

Noble laurel EO 

Clary sage EO 

Parmanthema K  

Mimosa abs 

Robertet 

BLH PIM 

Robertet 

Mane 

Payan & Bertrand 

Albert Vieille 

Firmenich 

BLH PIM 
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 987 

 988 

 989 

 990 

 991 

 992 

Table S2. Students’ performance profile. List of the 14 metrics significantly modulated by 993 

training that were selected from all tasks to create the performance profile of students at each 994 

time measurement independently. ADJ: adjectives; BTW: between-student comparisons; REF: 995 

reference or expert teacher-related metrics; sim: semantic similarity; WTH: within-student 996 

comparison. 997 

Task  Significant Metrics 

Description task 
ADJ_count, NOUN_count, TTR_BTW, 

sim-WTH, sim-BTW, sim-REF 

Evocation task sim-WTH, sim-BTW 

Visual recognition task - 

Odor recognition task Correct Rejections 

Categorization task 
ARI-BTW, ARI-REF, words count, 

TTR-BTW, sim-BTW 

 998 

Tobacco abs 

Coffee abs 

Guaiac wood EO 

Polysantol  

Diacetyl  

Glycolierral 

Mane 

Robertet 

PCW 

Firmenich 

Sigma Aldrich 

Givaudan 



Table S3. RF and LSVM hyperparameters tuning. The average value (Mean), the standard 999 

deviation (SD), and the most frequently occurring value (Mode) are presented for each 1000 

parameter in both models. 1001 

Model Parameter Mean SD Mode 

RF 

n_estimators 190 94.34 100 

max_depth -1 0 -1 

min_samples_split 4.7 3.58 2 

min_samples_leaf 2 1.34 1 

SVM 
C 13.51 29.12 1 

max_iter 1000 0 1000 

 1002 


